1,019 research outputs found

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract

    Robust correlated and individual component analysis

    Get PDF
    © 1979-2012 IEEE.Recovering correlated and individual components of two, possibly temporally misaligned, sets of data is a fundamental task in disciplines such as image, vision, and behavior computing, with application to problems such as multi-modal fusion (via correlated components), predictive analysis, and clustering (via the individual ones). Here, we study the extraction of correlated and individual components under real-world conditions, namely i) the presence of gross non-Gaussian noise and ii) temporally misaligned data. In this light, we propose a method for the Robust Correlated and Individual Component Analysis (RCICA) of two sets of data in the presence of gross, sparse errors. We furthermore extend RCICA in order to handle temporal incongruities arising in the data. To this end, two suitable optimization problems are solved. The generality of the proposed methods is demonstrated by applying them onto 4 applications, namely i) heterogeneous face recognition, ii) multi-modal feature fusion for human behavior analysis (i.e., audio-visual prediction of interest and conflict), iii) face clustering, and iv) thetemporal alignment of facial expressions. Experimental results on 2 synthetic and 7 real world datasets indicate the robustness and effectiveness of the proposed methodson these application domains, outperforming other state-of-the-art methods in the field

    Gaussian process domain experts for model adaptation in facial behavior analysis

    Get PDF
    We present a novel approach for supervised domain adaptation that is based upon the probabilistic framework of Gaussian processes (GPs). Specifically, we introduce domain-specific GPs as local experts for facial expression classification from face images. The adaptation of the classifier is facilitated in probabilistic fashion by conditioning the target expert on multiple source experts. Furthermore, in contrast to existing adaptation approaches, we also learn a target expert from available target data solely. Then, a single and confident classifier is obtained by combining the predictions from multiple experts based on their confidence. Learning of the model is efficient and requires no retraining/reweighting of the source classifiers. We evaluate the proposed approach on two publicly available datasets for multi-class (MultiPIE) and multi-label (DISFA) facial expression classification. To this end, we perform adaptation of two contextual factors: where (view) and who (subject). We show in our experiments that the proposed approach consistently outperforms both source and target classifiers, while using as few as 30 target examples. It also outperforms the state-of-the-art approaches for supervised domain adaptation

    Fully automatic facial action unit detection and temporal analysis

    No full text
    In this work we report on the progress of building a system that enables fully automated fast and robust facial expression recognition from face video. We analyse subtle changes in facial expression by recognizing facial muscle action units (AUs) and analysing their temporal behavior. By detecting AUs from face video we enable the analysis of various facial communicative signals including facial expressions of emotion, attitude and mood. For an input video picturing a facial expression we detect per frame whether any of 15 different AUs is activated, whether that facial action is in the onset, apex, or offset phase, and what the total duration of the activation in question is. We base this process upon a set of spatio-temporal features calculated from tracking data for 20 facial fiducial points. To detect these 20 points of interest in the first frame of an input face video, we utilize a fully automatic, facial point localization method that uses individual feature GentleBoost templates built from Gabor wavelet features. Then, we exploit a particle filtering scheme that uses factorized likelihoods and a novel observation model that combines a rigid and a morphological model to track the facial points. The AUs displayed in the input video and their temporal segments are recognized finally by Support Vector Machines trained on a subset of most informative spatio-temporal features selected by AdaBoost. For Cohn-Kanade and MMI databases, the proposed system classifies 15 AUs occurring alone or in combination with other AUs with a mean agreement rate of 90.2 % with human FACS coders

    Toward an affect-sensitive multimodal human-computer interaction

    No full text
    The ability to recognize affective states of a person... This paper argues that next-generation human-computer interaction (HCI) designs need to include the essence of emotional intelligence -- the ability to recognize a user's affective states -- in order to become more human-like, more effective, and more efficient. Affective arousal modulates all nonverbal communicative cues (facial expressions, body movements, and vocal and physiological reactions). In a face-to-face interaction, humans detect and interpret those interactive signals of their communicator with little or no effort. Yet design and development of an automated system that accomplishes these tasks is rather difficult. This paper surveys the past work in solving these problems by a computer and provides a set of recommendations for developing the first part of an intelligent multimodal HCI -- an automatic personalized analyzer of a user's nonverbal affective feedback

    Biologically vs. logic inspired encoding of facial actions and emotions in video

    No full text
    • …
    corecore